27 May

Floer Homology Language Note 1 Potential of Language

Floer Homology Language TANAKA Akio         Note 1 Potential of Language    ¶ Prerequisite conditions Note 6 Homology structure of Word  1 (Definition) (Gromov-Witten potential)   2 (Theorem) (Witten-Dijkggraaf-Verlinde-Verlinde equation)    3 (Theorem) (Structure of Frobenius manifold) Symplectic manifold     (MwM) Poincaré duality     < . , . > Product     <V1°V2V3> = V1V2V3) (MwM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential.  4 (Theorem) Mk,β (Q1, ..., Qk) =   N(β) expresses Gromov-Witten potential.    [Image] When Mk,β (Q1, ..., Qk) is identified with language, language has potential N(β).        [Reference] Quantum Theory for language / Synopsis / Tokyo January 15, 2004        First designed on <energy of language> at Tokyo April 29, 2009 Newly planned on further visibility at Tokyo June 16, 2009  Sekinan Research Field of language  

Comments
* The email will not be published on the website.
I BUILT MY SITE FOR FREE USING