27 May

Floer Homology Language Note 7 Quantization of Language

Floer Homology Language TANAKA Akio     Note 7 Quantization of LanguageTheorem1(Barannikov, Kontsevich 1998)<.,.>, ° defines structure of Frobenius manifold at neighborhood of H's origin.2(Kontsevich 2003)There exists φk : EkΠ2(Γ(M;Ω(M))) → Π2CD(AA), k = 2, ... . is L map.Explanation1(Local coordinates of Poisson structure){f, g} 2(Map){.,.} : C × C  →CThe map  has next conditions.(i)   {.,.} is R bilinear,{f, g} = - {g, f}.(ii)  Jacobi law is satisfied.(iii) {fgh} = g{f, h} + h{f, g}3(Gerstenharber bracket)45678 )Manifold     MR2nCoordinates     p, qDifferential form     w = dqidpiSubset of C( R2n )        AElement of A       F    Differential operator of R2n      D(F)D({FG}) ≡ [D({F}, D({G}][Image 1]Quantization of language is defined by theorem (Kontsevich 2003).[Image 2]Complex unit  is seemed to be essential for mirror symmetry of language by explanation 8.[References] Quantum Theory for language / Synopsis / Tokyo January 15, 2004Mirror Theory / Tokyo June 5, 2004For WITTGENSTEIN Ludwig / Position of Language / Tokyo December 10, 2005Tokyo June 24, 2009 Sekinan Research Field of Language

Comments
* The email will not be published on the website.
I BUILT MY SITE FOR FREE USING